Flight Mechanics for Mission Scientists

Juan R. Cruz
Atmospheric Flight and Entry Systems Branch
NASA Langley Research Center

8th International Planetary Probe Workshop Portsmouth, Virginia June 6-10, 2011

Flight Mechanics

Definition

The branch of engineering that studies the motion of aerospace vehicles in flight when acted upon by gravitational, aerodynamic, propulsive, and other external forces.

In this lecture I will focus on the flight mechanics of entry and descent vehicles, with an emphasis on:

- State variables, equations of motion
- Aerodynamics
- Improving communication between flight mechanics engineers and mission scientists

State Variables

<u>Twelve</u> state variables completely define the motion of the vehicle:

u, v, w - vehicle's center of mass velocity vector

p, q, r - vehicle's rotation rate vector

 ψ , θ , ϕ - vehicle's attitude; *Euler Angles*

 X_P, Y_P, Z_P vehicle's center of mass location vector

We will need one differential equation for each of these state variables

State Variables - Velocity

Definition of u, v, w, and V

State Variables - Rotation

Definition of p, q, r, and Ω p, q, r, and Ω are shown by double arrow and arc arrow X

State Variables - Attitude

State Variables - Position

Equations of Motion

The equations of motion (EOM) can be written conceptually as:

$$\begin{bmatrix} m \end{bmatrix} \left\{ \dot{V} \right\} = \left\{ F_{gravity} + F_{propulsion} + F_{aero} \right\}$$
 These equations are coupled
$$\begin{bmatrix} I \end{bmatrix} \left\{ \dot{\Omega} \right\} = \left\{ M_{gravity} + M_{propulsion} + M_{aero} \right\}$$

$$\left\{\dot{\Theta}\right\} = \left\{\mathsf{f}_{\mathsf{Q}}\big(\Theta, \Omega\big)\right\}$$

$$\left\{\dot{X}\right\} = \left\{f_{X}\!\left(V,\Theta\right)\right\}$$

V - velocity

 Ω - rotation

 Θ - attitude

X - position

Standard numerical methods are used to integrate the EOM. Significant difficulties arise in obtaining accurate values for the aerodynamic forces and moments, F_{aero} and M_{aero} .

Modeling and Simulation

Uncertainty and Monte Carlo Simulation

Values for input quantities related to the vehicle models, initial conditions, and environment models are often only known in a statistical sense. The effect of the uncertainties in these quantities are addressed by executing the simulation 1000's of times using the Monte Carlo method.

—— Calculate 1000's of trajectories ——>

Monte Carlo Simulation Example – Landing Footprint

Wind Relative Angles

Sources of Aerodynamic Data

The needed aerodynamic data can be obtained in several ways:

Static Wind Tunnel Test

Dynamic Testing

Computational Fluid Dynamics

Regardless of the data source, aerodynamics model and data are often approximate and constitute a significant source of the uncertainty in flight mechanics simulations.

Terminology

- Be rigorous in the use of terminology
 - Example: angle of attack is generally not the same as the pitch angle; $\alpha \neq \theta$
- Be clear on the coordinate system being used
 - The standard body coordinate systems used in flight mechanics is often different than that used by the mechanical systems design team

Flight Mechanics: Blue Mechanical Systems: Red

Accuracy of Results

- Numerous assumptions are made in flight mechanics simulations. These assumptions affect the accuracy of the calculated responses.
 - Example: aerodynamic damping derivatives
- The accuracy of calculated responses varies between calculated responses
 - Example: dq/dt (rotational acceleration in pitch) is typically less accurate than q (rotational velocity in pitch)

Statistics

- Most of the input quantities and calculated responses are best characterized in terms of statistics
- Do not assume that the statistical distribution of calculated responses is normal (Gaussian) – often they are not!
 - Because of this, avoid specifying uncertainty in terms of the standard deviation, σ
 - Useful ways of describing the statistics of a response include Histograms and Cumulative Probability Graphs Mean, Median, and Percentiles

Requirements

- Requirements on calculated responses are best specified in statistical, not absolute terms
 - Example: X shall not exceed a value of Y at the 99.5 percentile level
- Be very specific in defining requirements related to calculated responses

Weak: The rotation rate shall be less than X rad/s

Better: The magnitude of the rotation rate vector, $|\Omega|$, shall be less than X rad/s 20 percent of the time from event A to event B.

Environments I

Environments are critical to accurate simulations

```
gravity field
atmospheric density
atmospheric speed of sound
wind
turbulence
```

 Some of these environment variables have first-order effects on the flight (e.g., atmospheric density)

Environments II

- Without some of these environment variables it is impossible to calculate certain responses
 - Example: wind and turbulence models are needed to calculate the flight dynamics of a vehicle in terminal descent
- The flight mechanics team will depend on the science team for definition of some or all of these environments